Introducción
Testimonios
Investigación
Preguntas y respuestas
Literatura
Contacto

Ibogaine

Modelo de Ibogaina proyectado da www.iconbazaar.com

Nombre Científico: TABERNANTHE IBOGA
Variedad/famiglia: Fam.Apocynaceae
Nombre(s) Popular(es) : Iboga
Descripción: Arbusto de 1 a 1,5 metros de altura, tiene un látex copioso, blanco y de olor desagradable. Las hojas son ovadas, generalmente de 9 a 10 cm de largo y 3 cm de ancho verde-amarillentas por debajo. Las flores con diminutas y amarillentas, rosadas o blancas manchadas de rosa, crecen en grupos de 5 a 12 flores y tienen una corola en forma de tubo largo ensanchado en la boca. El fruto es ovoide con la punta amarillo-anaranjada y se presenta a pares, llegando a ser tan grandes como aceitunas.
Hábitat: Bosques
Ámbito Geográfico : Gabón, Congo y Oeste de África
Coltivo: as semillas frescas germinan fácilmente a una temperatura ambiente de 30ºC, aunque pueden tardar 2 meses en germinar. Se plantan en tierra negra con 1/3 de arena gruesa. La luz solar debe ser indirecta y debe ir acompañada de cálidez y humedad en el ambiente hasta que la planta madure por lo que puede ser cultivada como planta de interior. La temperatura ideal va de los 20ºC a los 40ºC. Por debajo de los 5ºc la planta sufriría daños irreversibles.
Obtención : Se reduce la raíz a polvo o bien en finas virutas.
Química : Las raíces contienen un complejos de diversos alcaloides indólicos:
· IBOGAINA en forma de agujas prismáticas del etanol con punto de fusión entre 152º y 153º solubles en etanol, éter, cloroformo, acetona, el hidrocloruro tiene un punto de fusión entre 299º y 300º (desc.). soluble en agua. Se trata de una sustancia controlada. Su fórmula química es C20H26N2O.
· IBOGAMINA
· TABERNANTINA
· VOACOANGINA,
· CORONARIDINA.
· otros.

En la raíz seca se encuentra entre un 1 un 2,6% de alcaloides, mientras que en la corteza de la raíz un 5-6% de ellos
Propiedades Médicas: Estimulante del sistema nervioso central.Antidepresivo. Se utiliza actualmente en terapias de deshabituación ya que anula la actitud del consumismo compulsivo, o sea la adicción Efecto Afrodisiaco, euforizante, duplica la potencia muscular, agudiza la vista, estimula la digestión y el petito.
Ha sido el primer antidepresivo de la medicina oficial. Pequeñas cantidades son usadas por los cazadores para mantenerse despiertos toda la noche. En cantidades superiores puede presentar un efecto enteogénico.
Tipo Ingesta/Consumo:Oral. Se ingiere la raíz seca en polvo o en finas virutas; como su sabor es amargo lo mejor es encapsularla o bien acompañarla de miel. Si se toma con agua caliente se absorberá mejor.

Precauciones: No combinar con alcohol ni otros estimulantes para evitar interacciones. Una sobredosis provocaría convulsiones y parálisis respiratoria. Es conveniente que con dosis elevadas siempre acompañe alguien que pueda ayudar.
Dosis Mínima:La ibogaina es enteógena por encima de 1 mg/kg. De 0,5 a 1 gramos de corteza de raíz seca para los no iniciados para evaluar el grado de sensibilidad a esta planta, en pruebas sucesivas se puede aumentar la dosis hasta una cantidad de 2 a 5 gr., suficientes para comprobar la estimulación y el efecto afrodisíaco. De 5 a 15 gr. pueden producir cambios visuales y el efecto enteogénico.
Dosis Mortal :De 30 a 50 gr.
Modo Recuperación :Existe antídoto. En España contactar con el Servicio de Información Toxicológica telf.91.562.04.20
Historia:Los miembros de la sociedad secreta Bwiti la toman en dosis que van de los 15 a 50 gr.ya que
ésta es la dosis normal que les provoca el efecto enteogénico. Esta dosis está dentro del umbral peligroso que puede producir la muerte. Por ello los que van a ser iniciados siempre están custodiados por una "MADRE" que cuenta con un antídoto.
Referencias:

BIBLIOGRAFÍA

CAÑAMO nº39 J.O.
PHARMACOTHEON, J.Ott. Ed. Los Libros de la Liebre de Marzo 1996
LA BIBLIA HERBAL J.O. E-mail: mahuang@usa.net, Última revisión 16.04.03

(reimpresión de Mecanismos Neuróticos del abuso de fàrmacos, Tomo 914 de los Anales de N.Y.A. of S., Septiembre 2000)

Ibogaina: farmacocinetica, sicurezza e efficacia

Deborah C. Mash, Ph.D., Department of Neurology. 1501 N.W. 9th Av., Miami, Florida 33136. Tel.: 305- 243- 5888; Fax.:305-243-3649, email: dmash@med.miami.edu

Inserción: La ibogaina es un indole alcaloida. que se encuentra en la raíz de Tabernanthe Iboga .(Fam. de las Apocynaceae.), es un arbusto de la floresta pluvial de Est de A'frica. El ibogaine esta utilizado por los indígenas en bajas cantidad para combatir fatiga, rabia, sed y también està utilizado en grandes cantidades como substancia sagrada en los rituales religiosos.

Drogadictos pertenecientes a grupos de ayuda Americanos y Europeos afirman que el ibogaina ayudarìa al enfermo para curar su abstinencia (de las drogas) y que eso tendrìa una aplicación a largo plazo, hasta como psicoterapia para el tratamiento y también, harìa desaparecer la necesidad de alcaloides narcóticos como el opio. A testigo de eso se cuenta con que el utilizo de una sola dosis de ibogaina eliminarìa la enfermedad de abstinencia y podrìa reducir el "craving", es decir el deseo psicològico de las drogas, hasta para periodos realmente largos. Hipotéticamente la eficacia de la ibogaina en el tratamiento de dependencia de las drogas parciarcialmente puede haber sido causada por la acción de un METABOLITA activo: la noribogaina. La mayor parte de las transformaciones a través del metabolismo ocurre por parte de un enzima , el CYP2D6 de la sangre. Las concentraciones farmacéutica en la sangre de ibogaina y de noribogaina, asumida una vez solamente en personas sanas han subrayado un perfil farmacéutico bastante complejo y variado. La ibogaina parece tener un importante efecto en el "craving" de la cocaína y de la heroína en el periodo desintoxicante del enfermo.

Después de un tratamiento con ibogaina, esta substancia favorece la reducción sintomática de la depresión y dentro de 30 días a partir de la fecha del tratamiento este efecto parece estar activo todavía. Ya que la ibogaina viene eliminada por la sangre con rapidez se observa que los efectos beneficios tardíos parecen ser debidos a la noribogaina en el sistema nervioso central. En efecto la noribogaina actúa como un estimulante de los conectores u-opio y eso podrìa en parte explicar el conjunto de las sintomas graves de abstinencia y sus efectos. En la asunción de morfina con finalidad medica.

Discusión: Los resultados del estudio medico parecen demostrar como los sintomas depresivos y el "craving" se reducirìan de manera notable después de la asunción de ibogaina. La documentación se basa en un estudio medico hecho por 27 drogadictos, que aceptaron asumir esta substancia, aunque este numero permanece pequeño. Para confirmar esta hipótesis se necesitan muchos otros estudios. Además se necesita averiguar para solucionar la relación entre el CYP2D6 con las sintomas depresivas , el deseo de las drogas y el empeoramiento.

Después del tratamiento con la ibogaina los enfermos que manifestaban dependencia del opio parecen menos deseosos de buscar alguna satisfacción en las drogas como la heroína o el opio, y parecen entender que el utilizo de dichas drogas pueda solucionar sintomas de abstinencia y de depresión. Además el uso de la ibogaina demuestra que existe una reducción del deseo de utilizo de la heroína, pero no de la cocaína, por parte de los enfermos.

INTRODUCTION

Ibogaine is a naturally occurring indole alkaloid derived from the roots of the rain forest shrub Tabemanthe iboga. Ibogaine is used in low doses by indigenous peoples of western Africa to combat fatigue, hunger and thirst, and in higher doses as a sacrament in religious rituals. The use of ibogaine for the treatment of drug dependence has been based on anecdotal reports from American and European addict self-help groups that it decreased the signs of opiate withdrawal and reduced drug craving for cocaine and heroin for extended time periods.1 Although ibogaine has diverse effects on the central nervous system (CNS), the pharmacological targets underlying the physiological and psychological actions of ibogaine are not completely understood. The purported efficacy of ibogaine following single-dose administrations may be due to the formation of an active metabolite.2,3 Ibogaine is O-demethylated to 12-hydroxyibogamine (noribogaine) by the activity of liver enzymes. Noribogaine appears to have a slow clearance rate in humans, suggesting that some of the aftereffects of ibogaine may be due to the actions of the metabolite.3,4

Medications for the treatment of addictions are intended to reduce or eliminate drug use, reduce harm to the patient, and/or modify high risk behaviors.5 Potential drug candidates for the treatment of cocaine and opiate dependence have been considered based on pharmacological approaches. The neurobiological similarities between depression and drug dependence have led to a self-medication hypothesis.6 Based on this association, drug abusers may self-medicate with opioids or psychostimulants in an effort to improve their dysphoric mood. Chronic drug abuse leads to adaptations at neural systems that mediate drive, motivation, and affect.7 Discontinuation of drug use leads to alterations in these motivational systems, placing more incentive value to the abused drug than to nondrug stimuli, thus leading to a loss of control over drug use.8 This hypothesis is supported by clinical observation that drug dependence is characterized by an intense desire to administer the drug to the exclusion of other reinforcement. We report here that single-dose administrations of ibogaine to drug-dependent individuals resulted in fewer self-reports of craving for cocaine and opiates, and significantly improved depressive symptoms. These preliminary observations provide evidence for an improvement in clinical status following detoxification with ibogaine.

METHODS

Subjects were self-referred for inpatient detoxification and met inclusion/exclusion criteria. All individuals were deemed fit and underwent treatment following a physician's review of the history and physical examination. Participants did not have histories of stroke, epilepsy or axis I psychotic disorders. Results of the electrocardiogram and clinical laboratory testing were within predetermined limits. All subjects signed an informed consent for ibogaine treatment. Participants included 27 treatment-seeking opioid- and cocaine-dependent men (n = 23) and women (n = 4). The mean age was 34.6 +/- 1.9 years old for the opiate group and 37.5 +/- 2.9 years old for the cocaine group. Mean education level was 14.0 +/- 0.5 years. All participants met DSM-IV criteria for cocaine or opioid dependence and had positive urine screens at entry to the study. Individuals participated in a 14-day inpatient study to determine the safety and effectiveness of ibogaine as a potential medication treatment for drug dependence. Participants were assigned to one of three fixed-dose (500, 600, or 800 mg) ibogaine HCl treatments under open-label conditions. Ibogaine and 12-hydroxyibogamine (noribogaine) were measured in whole blood specimens by full-scan electron impact gas chromatography/mass spectrometry (GC/MS) as described previously.2 Subjects were genotyped for the CYP2D6 alleles (3, 4, 5, and wildtype alleles) as described previously.9

On admission, participants were administered the Addiction Severity Index10 and received structured psychiatric evaluations before and after ibogaine treatment (SCID I and II). In cases where the participant's responses were deemed questionable due to intoxication or withdrawal signs, portions of all interviews were reconducted later, as necessary. Additional information about substance use history, as well as past and current medical condition(s), was gathered and later cross-referenced for accuracy through a separate comprehensive Psychosocial Assessment.

Participants were required to complete a series of standardized self-report instruments relating to mood and craving at three different time points during the study and at one month following discharge from the treatment program. Subjects were asked to provide ratings of their current level of craving for cocaine or opiates using questions from the Heroin (HCQN-29)11 and Cocaine (CCQN-45) Craving Questionnaires.12 Self-reported depressive symptoms were determined by the Beck Depression Inventory.13 Subjects' scores were subjected to repeated measures analyses of variance with primary drug of abuse (opiates versus cocaine) as the between-subjects factor and treatment phase (pre-ibogaine, post-ibogaine, and discharge) as the within-subjects factor for the total score from the Beck Depression Inventory and the HCQN-29 and CCQN-45 subscales.

RESULTS



FIGURE 1. Pharmacokinetics of ibogaine and noribogaine over the first 24 h after oral doses of ibogaine. Data shown are from representative male (800 mg) and female (500 mg) subjects. Values for parent drug and desmethyl metabolite were measured in whole blood samples at the times indicated.

FIGURE 1 illustrates representative pharmacokinetic measures of the levels of parent drug and metabolite following oral doses of ibogaine. We have demonstrated previously that ibogaine is metabolized by cytochrome P4502D6 to an active metabolite noribogaine.14 In this study, the proportion of homozygous and heterozygous CYP2D6 extensive metabolizers (EM) were not significantly different between opioid- and cocaine-dependent groups (data not shown). None of the subjects was identified as a poor metabolizer (PM) genotype. The CYP-2D6-mediated metabolism of ibogaine resulted in significant levels of noribogaine in blood for male and female subjects. Ibogaine was well tolerated by both opiate- and cocaine-dependent subjects, in agreement with our previous findings.4

Subjects reported clinically significant levels of depressive symptoms (i.e., Beck depression score of 11 or more) at program entry.13 Opiate- and cocaine-dependent subjects did not differ significantly on the Beck depression scores. TABLE 1 summarizes the effects of ibogaine treatment on depressive symptoms following ibogaine detoxification from opiates and cocaine. The results demonstrated lower levels of self-reported depressive symptoms during inpatient ibogaine treatment. Beck depression scores were significantly lower at one month after program discharge as compared to those measured at program entry. This observation suggests a lasting effect of single-dose adminstration of ibogaine on mood and depressive symptoms.

TABLE 3 summarizes the results for selected categories from the HCNQ-29 and CCNQ-45 craving questionnaires. These instruments inquire about specific aspects of drug craving, including urges (category scale Desire to Use), as well as thoughts, about drug of choice or plans to use the drug (category scale, Intention to Use). The instruments incorporate questions about dynamics thought to be important for the reinstatement of drug-taking behavior by referencing the positive reinforcing effects of drugs or the expectation of the outcome from using a drug of choice (category scale, Anticipation of Positive Outcomes), or the alleviation of withdrawal states (category scale, Relief of Negative States). Perceived lack of control over drug use also was included (category scale, Lack of Control), because it is a common feature of substance abuse disorders and is most operative under conditions of active use, relapse, or for subjects at high risk.

Subjects undergoing opiate detoxification reported significantly decreased drug craving for all of the HCQN-29 scales at 36 h post-treatment mark, and mean scores remained significantly decreased at program discharge (TABLE 2). Subjects undergoing cocaine detoxification also reported significantly decreased drug craving at post-treatment and at discharge for three of the five category scales of the CCQN-45. Similar to the results of the HCQN-29, the lower mean scores for Intention to Use at program entry may reflect participants' inpatient circumstances and motivation for treatment. These results demonstrate an immediate and lasting attenuation of craving while the subject remained in treatment. At one month following discharge from the program, subjects' responses indicated that they still experienced diminished craving for cocaine and opiates (data not shown).

DISCUSSION

The results of this study revealed that levels of self-reported depressive symptoms and craving were significantly decreased following ibogaine administration. A limitation of the study is that it is based on findings in only 27 subjects; thus, replication is needed in future studies to determine the stability of the findings. Furthermore, it is not known whether the symptoms experienced in the treatment setting are unique. However, subjects were evaluated at one month after program discharge, having returned to their normal environment or following entry to residential sober living in a community setting. Future research efforts will be aimed at determining an association between CYP2D6 metabolizer status, depressive symptoms, drug craving, and relapse rates.

The concept of drug craving is believed to play a crucial role in the dynamics of relapse, although it has proven to be an elusive and difficult construct to measure. In part, this is due to its transient nature and its variable expression in addicts' subjective reports. Tiffany and co-workers12 have suggested that many investigations involving objective measures of craving have utilized unidimensional instruments (consisting of only one or a few items) that have not been adequately tested for validity or reliability. Therefore, it has been proposed that craving might best be captured by asking sets of multidimensional questions with terms that may be more familiar to addicts and that represent distinct conceptualizations of processes that may lead to craving.12,15 To our knowledge, this study represents the first attempt to confirm ibogaine's purported therapeutic effects on drug craving in well-characterized cohorts of opiate- or cocaine-dependent subjects.

After treatment with ibogaine, opiate-dependent subjects were less likely to anticipate positive outcomes from heroin (or other opiate) use, less likely to believe that heroin (or opiate) use would relieve withdrawal/dysphoria, and more likely to believe in their control for abstaining or stopping their drug use. Ibogaine treatment also decreased participants' desire and intention to use heroin. Cocaine-dependent subjects were less likely to anticipate positive outcomes from cocaine use, less likely to believe that cocaine use would relieve withdrawal/dysphoria, and more likely to believe in their control in abstaining or stopping their drug use at post-ibogaine and discharge assessments than at the pre-ibogaine assessment. Treatment did not seem to affect participants' desire to use cocaine nor their intent to use cocaine, in part because of floor effects at pre-ibogaine assessments and because of the small sample size.

Drug dependence results from distinct but interrelated neurochemical adaptations, which underlie tolerance, sensitization, and withdrawal. The apparent ability of ibogaine to alter drug-taking behavior may be due to combined actions of either the parent drug and/or its active metabolite at key pharmacological targets that modulate the activity of drug-reward circuits.16 Noribogaine is longer lasting and has a unique spectrum of neurochemical activities as compared to the parent compound. Recent studies have suggested that noribogaine's efficacy as a full û-opioid agonist may explain ibogaine's ability to block the acute signs of opiate withdrawal and its suppressive effects on morphine self-administration.17 Preclinical evaluation ofnoribogaine's anti-cocaine medication effects in a rat model of cocaine self-administration demonstrated that noribogaine antagonized cocaine-induced locomotor stimulation and reinforcement.18 Since ibogaine is cleared rapidly from the blood, the extended aftereffects on drug craving, mood, and cognition may be related to the actions of metabolite noribogaine. Medication development of a slow-release formulation of noribogaine for opiates and psycho stimulants dependence deserves further consideration.

ACKNOWLEDGMENTS

This work was supported in part by the Addiction Research Fund. We extend our appreciation to the staff of the Healing Visions Institute for Addiction Recovery, Ltd., St. Kitts, W.I. and Holistic Counseling, Inc., Miami, Florida. We thank the Centre for Addiction and Mental Health. Ms. Ewa Hoffmann provided excellent technial assistance with the performance of the genotypying for CYP2D6 alleles.

REFERENCES

1. SHEPARD, S.G. 1994. A preliminary investigation of ibogaine: case reports and recommendations for the further study. I. Subst. Abuse Treat. 11: 379-385.

2. HEARN, W. L., I. PABLO, G. HIME & D.C. MASH. 1995. Identificaion and quantitation of ibogaine and an O-demethylated metabolite in brain and biological fluids using gas chromatography/mass spectrometry. I. Anal. Toxicol. 19: 427-434.

3. MASH, D.C., I.K. STALEY, M. BAuMANN, R.P. RoTHMAN & W.L. HEARN. 1995. Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Pharmacol. Lett. 57: 45-50.

4. MASH, D.C., C.A. KOVERA, B.E. BucK, M.E. NoRENBERG, P. SHAPSHAK, W.L. HEARN & J. SANCHEZ-RAMos. 1998. Medication development of ibogaine as a pharmacotherapy for drug dependence. Ann. N. Y. Acad. Sci. 844: 274-292.

5. KLEIN, M. 1998. Research issues related to development of medications for treatment of cocaine addiction. Ann. N. Y. Acad. Sci. 844: 75-91.

6. MARKOU, A., T.R. KOSTEN & G.F. KOOB. 1998. Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18(3): 136-174.

7. KOOB, G.F. & F.E. BLOOM. 1988. Cellular and molecular mechanisms of drug dependence. Science 242: 715-723.

8. MARKOU, A., F. WEISS, L.H. GOLD, S.B. CAINE, G. SCHULTEIS & G.F. KOOB. 1993. Animal models of drug craving. Psychopharmacology 1l2: 163-182.

9. HElM, M.H. & U.A. MEYER. 1990. Genotyping of poor metabolizers of debrisoquine by allele specific PCR amplification. Lancet 336: 529-532.

10. McLELLAN, A.T., H. KUSHNER, D. METZGER, R. PETERS, I. SMITH, G. GRISSOM, H. PETTINATI & M. ARTGERIOU. 1992. The fifth edition of the Addiction Severity Index. I. Subst. Abuse Treat. 9: 199-213.

11. SINGLETON, E.G. 1996. The HCQN-29: a short version of the Heroin Craving Questionnaire. Unpublished research. Available from the Clinical Pharmacology and Therapeutics Research Branch, Intramural Research Program NIDA, 55 Nathan Shock Drive, Baltimore, MD 21224, USA.

12. TIFFANY, S.T., E. SINGLETON, C.A. HAERTZEN & I.E. HENNINGFIELD. 1993. The development of a cocaine craving questionnaire. Drug Alcohol Depend. 34: 19-28.

13. BECK, A.T., C.H. WARD, M. MENDELSON, I. MOCK & I. ERBAUGH. 1961. An interview for measuring depression. Arch. Gen. Psychiatry 4: 561-571.

14. OBACH, R.S., I. PABLO & D.C. MASH. 1998. Cytochrome P4502D6 catalyzes the 0-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxyibogamine. Drug Metab. Dispos. 25(12): 1359-1369.

15. CARTER, B.L. & S. TIFFANY. 1999. Meta-analysis of cue-reactivity in addiction research. Addiction 94(3): 327-340.

16. STALEY, I.K., Q. OUYANG, I. PABLO, W.L. HEARN, D.D. FLYNN, R.B. ROTHMAN, K.C. RICE & D.C. MASH. 1996. Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine. Psychopharmacology 127: 10-18.

17. PABLO, I. & D.C. MASH. 1998. Noribogaine stimulates naloxone-sensitive (35S]GTPyS binding. Neuroreport 9:109-114.

18. MASH, D.C. & S. SCHENK. 1996. Preclinical screening of an ibogaine metabolite (noribogaine) on cocaine-induced hyperlocomotion and cocaine self-administration. Soc. Neurosci. Abstr. 22: 1929.

Introducción | Testimonios | Investigación | Preguntas y respuestas | Literatura | Contacto

Contáctenos: 1-800-573-6274
© 2012. All Rights
Reserved.